
To appear in MICRO-2024. Authors Preprint.

Polymorphic Error Correction
Evgeny Manzhosov and Simha Sethumadhavan

Department of Computer Science, Columbia University
New York, New York, USA

Email: {evgeny, simha}@cs.columbia.edu

Abstract—In this paper, we propose a new memory error
correction scheme, Polymorphic ECC, based on a novel idea of
redundancy polymorphism for error correction. With redundancy
polymorphism, we can use the check bits, i.e., parity bits in
traditional ECC, to correct errors from different fault models.
For example, the error correction procedure will use the same
redundancy value for single-bit errors, double-bit errors, Chip-
Kill, and others. As a result, Polymorphic ECC corrects more
errors than traditional codes, which typically target a single fault
model or require multiple redundancies for multi-fault model
support, leading to higher storage overheads. Our construction
is very compact, allowing us to embed an inlined cryptographic
message authentication code (MAC) with each cacheline, ensuring
data integrity and near 100% error detection without needing
any extra storage. The MAC, further permits iterative correction
among the many supported fault models. In the paper, we show
that the novel combination of redundancy polymorphism with
iterative correction, corrects errors due to fault models not
covered by traditional codes and guarantees data integrity with
up to 60-bit MACs while using 64-byte cachelines and standard
40-bit DDR5 memory channels.

Index Terms—Memory Error Correction, Security, Reliability,
Polymorphism.

I. INTRODUCTION

Today, Error Correction Codes (ECC) are critical for offer-
ing acceptable levels of system reliability. Their effectiveness,
however, is increasingly challenged by emerging security
threats [14] and modern defense mechanisms [74]. Specifi-
cally, rowhammer faults [64], [71] and extremely tight design
margins exacerbate the reliability concerns of modern memory
systems. At the same time, new security defenses, such as
memory encryption [4], [11], [40], further strain program
reliability since faults that escape traditional ECC mechanisms
result in errors that diffuse and propagate more widely. Thus,
in this paper, we present a novel ECC mechanism designed
to address the dual challenges of ensuring both the reliability
and security of modern memory systems.

We describe a novel error correction scheme, Polymorphic
ECC, which significantly enhances error detection and cor-
rection capabilities compared to current state-of-the-art codes
while staying within the bits budgeted to support traditional
ECC. Because of how it is constructed, Polymorphic ECC
permits at least a 40-bit MAC to be stored with each 64-
byte cache line to detect any pattern of bit corrections with
a probability of 1 − 2−40 with no additional area overhead.
Further, Polymorphic ECC also permits storing 11 redundancy
bits per 64 data bits, allowing it to correct any single-bit
error, two random bit errors, eight-bit errors within naturally
aligned eight-bit symbols, and more, again, at the cost of no

additional storage. In contrast, a state-of-the-art Reed-Solomon
code, for the same storage budget as Polymorphic ECC, can
only correct symbol-aligned errors [61], with a ∼7% chance of
miscorrecting other corruptions. This limitation becomes even
more pronounced when ECC bits used for traditional error
correction mechanisms are shared for security features such
as memory safety tags [58], [74], further reducing the efficacy
of conventional codes [51].

Traditional constructions of ECC have redundancy infor-
mation crafted (mathematically) to work with only one fault
model. However, our construction uses residue codes, where
the redundancy information is the remainder (residue) left over
after dividing the data word by a known constant [26]. With
this approach, we gain two advantages on parity-based codes.
First, we gain redundancy polymorphism, i.e., the ability to
map the same residue value to errors due to multiple fault
models. Second, as we discovered, the cardinality of those
mappings is much smaller than that of those made with
traditional parity, making the search space for errors much
smaller and error correction much faster.

For example, consider a 32-bit word protected by 4-bit
parity, where one bit protects 8 bits of data, i.e., the first parity
bit protects bits 0 to 7, the second parity bit protects bits 8 to
15, etc. Suppose we know there was a two-bit error in the data,
and we need to correct it through search. When we recompute
the parity bits, we can have two outcomes: (1) two parity bits
do not match, which will indicate corrupted bytes, bounding
the search space to 64 error candidates, and (2) parity bits
match, which means that we have to try all possible 2-bit errors
that are in the same byte or 4 ×

(
8
2

)
= 112 error candidates.

In the same settings, Polymorphic ECC, as we show in the
paper, needs at most 18 and 10 error candidates, respectively,
resulting in a significant reduction of search space.

Conceptually, Polymorphic ECC works in two steps: (1)
error detection via MAC check and (2) error correction via
iterations. The error detection is done by comparing an inlined
MAC with a new one recomputed from the data, and if those
MACs do not match, we declare an error. In this case, we
begin the iterative correction process. First, we use codeword
residue to derive probable errors for the first fault model, say,
1-bit errors. Then, for each iteration, we use one of those
error candidates to correct the error, and the outcome of each
correction trial is verified by MAC check against inlined MAC.
Suppose none of the error candidates of the first fault model
corrected the error and passed MAC verification. In that case,
we try the second fault model, say random 2-bit errors; we
again use the same codeword residue as before to derive error

candidates for the 2-bit errors and use them for correction.
This iterative correction continues until MACs match for one
error candidate or exhaustion of fault models, in which case
we detect an uncorrectable error.

To better understand our solution, let’s walk through a
simple example. Imagine we are storing the number 100
in memory, and for error correction, we use a constant of
3. Under Polymorphic ECC, we store two key pieces of
information: a hash of the number 100 (let’s assume this is a
3-bit hash, and the result is 5) and the remainder (or residue)
when 100 is divided by 3, which is 1. Suppose a bit flip occurs,
and instead of 100, we read 101. When we recalculate the hash
of 101, we get a different value, say 6, detecting an error. To
correct the error, we compute a new residue value of 101
divided by 3, getting 2. Then, for each fault model, we select
error candidates that are mapped to a residue value of 2 and
use them for error correction. We continue this way until we
either correct the error or exhaust all possible fault models
we want to handle. The feature of redundancy polymorphism
enables the code to support multiple fault models with a small
number of redundancy bits.

To intuitively understand the benefits of such a code,
consider a memory under Rowhammer conditions. Here,
Rowhammer conditions could mean faults that are caused by
an attacker or unintended pathological conditions. A foolproof
approach to detect Rowhammer is storing a MAC of memory
at some granularity, such as cacheline, in a decoupled part of
the DRAM. This simple solution has some drawbacks. First,
this MAC is designed to be orthogonal to the error correction
code present in this system, which already provides some
— weak — detection capability. Thus, this solution makes
inefficient use of a resource that is already present. Second,
fetching the MAC requires another memory access, costing
bandwidth and energy. Third, storing the MAC increases the
memory footprint and execution time of the program, both
of which increase the vulnerability to benign faults. Finally,
the MAC-based solution does not offer any correction guaran-
tees, which may be necessary for high-availability systems.
Furthermore, the error patterns induced with unintentional
Rowhammer may not fit the traditional fault models designed
around random bit flips or typical failures like one chip of
a DIMM failing. In contrast, Polymorphic ECC circumvents
these drawbacks by storing the MAC inline and alongside
the data, reducing bandwidth and energy cost, working syner-
gistically with ECC residue bits to offer correction, which is
good for an unintentional Rowhammer, and finally, avoiding
storing additional metadata which further improves reliability
by reducing memory vulnerability.

Concretely, in this paper:
• We propose Polymorphic ECC, an ECC scheme that can

use a single set of ECC bits to correct errors due to
multiple fault models. Specifically, each error correction
attempt will be made by treating existing ECC bits as if
those were encoded according to a different fault model.
For example, Polymorphic ECC can use cacheline’s ECC
bits to correct any error due to random double-bit, double-

#4

Sub-channel A, 40 bits

#5 #6 #7

#0 #1 #2 #3

#9

#8

#4

Sub-channel B, 40 bits

#5 #6 #7

#0 #1 #2 #3

#9

#8

#4

Sub-channel A, 32 bits

#5 #6 #7

#0 #1 #2 #3

#4

Sub-channel B, 32 bits

#5 #6 #7

#0 #1 #2 #3

ECC
Storage

Fig. 1: Top: DDR5 memory module with eight x4 DRAM de-
vices per 32-bit sub-channel. Bottom: DDR5 memory module
with two x4 devices for ECC storage and 40-bit sub-channels.

bounded, or single-device faults, providing better DDR5
reliability than industry-standard ChipKill.

• We show that Polymorphic ECC improves system se-
curity with support for long MACs. Since Polymorphic
ECC uses fewer ECC bits than other ChipKill schemes,
the freed space is reused to embed cryptographic MACs,
providing data integrity. Specifically, Polymorphic ECC
allows at least 42% longer MACs than Intel TDX [11].

• We show how increased fault coverage of Polymorphic
ECC improves system reliability against rowhammer.
Polymorphic ECC corrects rowhammer-induced errors
that are not correctable by Reed-Solomon or Unity ECC
schemes. Thus, a system with Polymorphic ECC spends
more time doing useful work than restarting due to
uncorrectable errors.

II. BACKGROUND

This section provides a brief background information rele-
vant to this work.

A. Modern Main Memory Organization

The latest generation of DRAM, DDR5, was introduced in
2022 and uses 64-bit-wide memory modules with two 32-bit
memory sub-channels [34]. As a result, to provide cacheline
worth of data, i.e., 512 bits assuming 64 byte cachelines, each
sub-channel performs 16 data transfers: 16 × 32 = 512, and
the IO width of DRAM chips determines the total number
of devices on a memory module. For example, with 4-bit-
wide DDR5 DRAM chips (often called x4 DRAMs), each
memory sub-channel will have eight devices, to a total of 16
per module, as shown in the top of Figure 1. For the server-
class systems, memory modules come with additional DRAM
chips to enable fast access to ECC check bits, i.e., redundancy
bits, as shown at the bottom of Figure 1, resulting in a wider
40-bit interface.

B. Fault Models and Error Correction

DRAM Fault Models. In the context of memory error cor-
rection, fault models capture how various physical failures
within DRAM devices affect stored data, e.g., a stuck-at-1
bit on DRAM IO or in the storage array. Both can manifest
as single-bit errors but require separate fault models, as failed
IO can corrupt the data on each memory read/write, while a
failed array bit affects only one word. Another example is a
complete device failure fault model that can result in all the

...

...

beat #1

beat #2

beat #3

codeword

x4 Symbols

...

...

beat #1

beat #2

beat #3 x8 Symbols

......

codeword(a) (b)

...

beat #1

beat #2

...

...

...

beat #1

beat #2

x
x

X: 1-bit error

DRAM #0 DRAM #1 DRAM #9DRAM #0 DRAM #1 DRAM #9

(c)

DRAM #0 DRAM #1 DRAM #9

...

DRAM #0 DRAM #1 DRAM #9

......

x
x

Fig. 2: Example of SSC configuration vs. symbol size for
memory with x4 DRAMs: (a) 4-bit symbols, (b) 8-bit symbols,
and (c) coverage of single-bit errors by codewords with 4-bit
(left) and 8-bit symbols (right), where 8-bit configuration re-
sults in double-symbol uncorrectable error vs. two codewords
with 4-bit symbols with correctable single symbol errors.

data read from the device being incorrect. This fault model is
used to design the Single DRAM Device Correct (SDDC) error
correction codes, colloquially referred to as ChipKill codes,
which are standard in server-class CPUs today.
ECC Design Considerations. The commonly used codes to
provide ChipKill guarantees are symbol-based codes, which
map data read from every DRAM chip into distinct symbols.
With enough redundancy, those codes can correct several
symbols with errors, e.g., code that corrects only one symbol
is called a Single Symbol Correcting (SSC) code.

To illustrate the design space of symbol size, device width,
and error coverage for SSC-class code, we will use the
illustration in Figure 2 that shows how data transmitted via
memory interface across multiple beats is grouped into sym-
bols, and how those symbols are mapped to DRAMs. We see
in Figure 2(a) that for the SSC code, the size of the symbol has
to be at least the width of the DRAM device; otherwise, upon
device failure, more than one symbol will be corrupted, and
the code won’t correct the error. On the other hand, Figure 2(b)
shows how the symbol size can be a multiple of the device
width, which results in one symbol containing the data across
multiple beats, e.g., an 8-bit symbol stores two beats worth
of data from a x4 DRAM chip. In the worst-case scenario of
chip failure, both configurations guarantee data recovery and
result in SDDC code.

However, if we want our ECC scheme to tolerate single-
bit errors on every memory read as well, which are more
common than complete device failures, the configuration from
Figures 2(a) and (b) perform differently. Figure 2(c) shows
the case of two single-bit errors that happen in the first and
the second beat. In this case, the code with 4-bit symbols will
correct both errors as they are detected as single-symbol errors
in different codewords. However, the code with 8-bit symbols
will detect a two-symbol error, which is beyond the correction
abilities of SSC code. Thus, while both codes handle the worst-
case scenario equally well, the performance of the first code in

the common case is better. To put it in the context of modern
systems, AMD uses code design with 8-bit symbols written
across two beats into x4 devices [1] as opposed to Intel’s
SDDC, which uses 16-bit symbols [69].
MUSE ECC. In our work, we build upon the ideas of MUSE
ECC [51], which provides SDDC guarantees. As shown in
Eq. 1, MUSE ECC’s codewords, C, are constructed by multi-
plying the data, D, with a constant integer multiplier M that
is selected using a search procedure that maps remainders
for each error pattern of interest. When the codeword C is
read from memory, it is checked modM , and if the resulting
remainder R is not zero, the error is detected. To correct the
errors, MUSE ECC checks a pre-existing map, MAP , of all
the errors and their remainders for an error E matching the
remainder R and uses it to correct the error.

C = D ×M
R = C modM

Dcorrected = (C −MAP (R))/M

(1)

To generate the MAP , MUSE ECC represents bit-flip as an
integer power-of-two, i.e., flipped bit bi has value 2i. Thus,
MUSE differentiates between 0→1 and 1→0 bit flips as those
have different error integers, i.e., 2i and −2i, respectively.
Similarly, symbol errors are sums of power-of-two integers
aligned to specific symbol boundaries. For example, if the
value of the third symbol in the codeword with 8-bit symbols
increases by 3, its error integer is (21 + 20) << 16.

To correct errors, MUSE ECC picks a multiplier M so that
all the errors in the fault model have a unique remainder,
and this error-remainder mapping is used for error correction.
With this construction, MUSE ECC uses fewer bits of storage
than similarly configured Reed-Solomon (RS) codes. However,
unlike RS codes, MUSE ECC is limited to 4-bit symbols
because 8-bit or 16-bit symbols need multipliers that need
more storage than common ECC budgets of 12.5% [33] and
25% [34]. Moreover, because MUSE ECC uses 4-bit symbols,
it needs to use two memory channels, e.g., 80-bit vs. 40-bit
with DDR5 memory, potentially reducing memory parallelism.
In Section V, we describe how Polymorphic ECC addresses
those limitations of MUSE ECC. Namely, SDDC Polymorphic
ECC has no lookup tables, allows for 8-bit and 16-bit symbols,
and works with standard 40-bit memory channels.

C. Memory Encryption

Memory Encryption has become a standard for many
enterprise use cases such as medical records or financial
transactions. Encrypting the data makes it look like a collection
of random bits with no discernible patterns. This property
is called diffusion [65], and its main function is to hide
correlations between the original data and the ciphertext. To
encrypt the data, (symmetric) encryption algorithms, substitute
and permute the data based on a (secret) key and the process
can be reversed during decryption. Due to bit diffusion, a
single bit flip in the encrypted text can change the decrypted
text significantly, often flipping about half of the bits. Today,
memory encryption is used to guarantee data confidentiality

TABLE II: Misdetection Rates (%) for Out-of-Model Errors

Code Number or Errors† Average2 3 4 5 6 7 8
Hamming(72,64) 0 75.9 0 67.9 0 62.5 0 29.5
Reed-Solomon 6.3 7.0 7.0 7.0 7.0 7.0 6.9 6.9
† bits for Hamming code, bytes w/ bit flips for Reed-Solomon

[4], [52] or ensure isolation of virtual machines in cloud
settings [11], [40], and is based on the AES cipher [19].

III. MOTIVATION

In this section, we introduce the notion of Out-of-Model
Faults and show how they affect system reliability once the
memory or computation is encrypted.

A. Out-of-Model Faults

Since a more robust ECC requires more storage for redun-
dancy, ECC are designed for the most common faults. We refer
to the faults that generate errors covered by the ECC as In-
Model Faults and those whose errors are not covered as Out-
of-Model Faults. For example, for the single error correcting
and double error detecting (SEC-DED) ECC, the single and
double-bit errors are In-Model, while triple-bit errors are Out-
of-Model because the SEC-DED ECC cannot consistently
correct those errors [29].

To illustrate this point, we profile ECC schemes and show
how some Out-of-Model Faults are detected as either In-
Model Faults or Out-of-Model Faults. Table II summarizes the
profiling results for Hamming SEC-DED and Reed-Solomon
ChipKill codes configured as in Figure 2(b). For Hamming
code, 75.9% of triple-bit errors will be misdetected as single-
bit errors and miscorrected into four-bit errors. Reed-Solomon
code misdetects about 6.3% of double-chip errors as single-
chip errors. Those results are similar to rates measured by
Cojocar et al. in Intel and AMD CPUs [14]. Errors that are
not miscorrected, e.g., 26.9% of triple-bit errors for Hamming
code, will be classified as detectable uncorrectable errors.
Thus, ECC schemes may misclassify the errors caused by the
Out-of-Model Faults on a case-by-case basis, leading to a lack
of consistency in their treatment. We discuss the difficulties
with the estimation of Out-of-Model Faults in Section VII-A.

B. Reliability Impact of Out-of-Model Faults

To illustrate how Out-of-Model Faults affect the reliability
of applications, we conduct a series of fault injections of
Out-of-Model Faults into the general purpose (SPEC’17) and
inference (image classification) workloads. We describe the
fault injection setup and the methodology in Section VII-B.
Encryption-amplified Errors. These errors happen in sys-
tems with encrypted memory. In those systems, the data is
first encrypted into ciphertext, then the ECC is applied, and
ciphertext is written to memory. When the ciphertext is read
back, first, the ECC is checked, and then the data is decrypted.
At first glance, it might appear that memory encryption is
completely orthogonal to ECC, and the addition of memory

128b data
... ...

ECC: ERROR
CORRECTOR

ECC: ERROR
CORRECTOR

Unencrypted

(a)

64-bit word
consumed by load

...

...............

DECRYPTION

16b ECC

Encrypted 64-bit word
consumed by load

(b) (c)

3 bits are flipped

Fig. 3: The lower pane of the figure shows how the bit
diffusion of encryption algorithms affects the magnitude of the
miscorrected errors compared to memory without encryption.
If corrupted with a 3-bit error (a), a data word with ECC might
be miscorrected by the ECC (b) and amplified by encryption
into an error of higher magnitude (c) due to bit diffusion.

encryption into a system with ECC does not affect reliability:
the ability of an error correction code to correct errors is inde-
pendent of whether the data is encrypted or not. However, the
orthogonality breaks once we consider Out-of-Model Faults.
The ECC often miscorrects errors due to those faults, leaving
the ciphertext corrupted before decryption, whose bit diffusion
property will amplify the corruption in the plaintext data. For
instance, some 3-bit errors in a 16-byte block with RS will
be miscorrected and later amplified by AES into 64-bit errors,
as shown in Figure 3. Thus, systems with memory encryption
may experience degradation of reliability guarantees.

General Purpose Workloads. Figure 4 shows the results
of the fault injection campaign on the SPEC’17 workloads
categorized into Crashed (gray), Hang (orange), Silent Data
Corruption (SDC, red), or No Effect (green) with encrypted
(E) and not encrypted (NE) memory. We see from the results
that with memory encryption (E) for some programs, SDC
rates increase dramatically, e.g., bwaves with 6.92×, roms
with 3.63×. No application showed reduction in SDC with
encrypted memory. Hangs, on the other hand, are program
dependent – roms has about 45% fewer Hangs with encrypted
memory, while bwaves has about 30% more. These results
show that adding encryption could cause significant degrada-
tion of reliability (SDC) and availability (Hangs) guarantees,
highlighting the need for security-reliability co-design of the
new generation of reliability features for secure processors.

ML Inference. The histograms in Figure 5 show the results
of fault injection into the inference workloads with encrypted
memory (a) and fully homomorphic encryption (b). Both
figures show the average Top-1 inference accuracy changes
due to Out-of-Model faults. We can see from the figures that
fewer inferences remain accurate as a result of encryption-
amplified errors. For example, Figure 5(a) shows that due
to encryption, the share of inaccurate inferences increases
(blue bars). Only 1079 injections have near baseline accuracy
compared to 1286 without memory encryption, a decrease of
16%. Moreover, with encrypted memory, the number of failed
inferences increased from 196 to 234 (+19%). Similar results
are observed for inference with homomorphic encryption:
18.5% of inferences experience more than a 10% drop in

0

50

100

O
u

tc
o

m
e

S
h

ar
e,

 %

E NE

bl
en

de
r

E NE

bw
av

es

E NE

ca
ct

us
B

S
S

N

E NE
ca

m
4

E NE

cp
ug

cc

E NE

cp
ux

al
an

E NE

de
ep

sj
en

g

E NE

ex
ch

an
ge

2

E NE

fo
to

ni
k3

d

E NE

im
ag

ic
k

E NE

lb
m

E NE

le
el

a

E NE

m
cf

E NE

na
b

E NE

na
m

d

E NE

om
ne

tp
p

E NE

pa
re

st

E NE

pe
rlb

en
ch

E NE

po
vr

ay

E NE

ro
m

s

E NE

w
rf

E NE

x2
64

E NE

xz

Crashed Hang No Effect SDC

Fig. 4: Results of the Fault Injection experiments for the SPEC’17 benchmarking suite. Each bar shows the share, in per cents,
of each outcome category: Crashed in gray, Hang in orange, SDC in red, and No Effect in green.

0 5 10 15 20 25 30 35 40 45 50 55 60 65
Average Top-1 Inference Accuracy (%)

101

103

Co
un

ts Fault-Free
Accuracy

NE E

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Average Inference Accuracy (%)

101

102

103

Co
un

ts Fault-Free
Accuracy

Fig. 5: Histogram with the accuracy distribution for (a) Mo-
bilenet v2 classification network Inference and (b) Cryptonets
[22] Inference with Full Homomorphic Encryption with in-
jected Out-of-Model Faults. Y-axis is log scale.

accuracy. Given the nature of applications first to use FHE,
e.g., inference on healthcare data, inaccurate data classification
can pose a high risk to the well-being of patients and the
quality of medical treatment, stressing the need for error
mitigation techniques expanded to FHE systems as well.
Summary. To summarize, introducing encryption techniques
can degrade a system’s reliability guarantees due to the dis-
astrous combination of miscorrected errors and diffusion of
bits. Given current adoption trends of systems with encrypted
memory and confidential computing [11], [25], Out-of-Model
Faults pose a serious concern that needs to be addressed.

IV. OUR SOLUTION FOR MULTI-FAULT-MODEL SUPPORT

Our goal in this work is to reduce the number of errors
due to Out-of-Model Faults, and we achieve that by security-
reliability co-design. We observe a strong demand for private
and secure computing that has begun being addressed by the
industry, e.g., Intel SGX [52] and TDX [11], which provide
cacheline data integrity guarantees via cryptographic MACs.
From the memory reliability point of view, n-bit MACs
provide us with near-perfect error detection probability of
1−2−n, which is far superior to standard ChipKill-level ECC.

Given near-perfect error detection, one solution for strong
error correction is to iteratively try and fix all the errors until

one of the fixes results in a MAC match. Variations of this
approach were taken by a number of prior works [20], [31],
[38], [62], [70]. However, the error search space is very large;
thus, either the correction time will be prohibitively long [38],
or the search space has to be limited to something reasonable
such as SDDC [20], [31], [62], [70], which fails to meet
our initial goal of covering more errors due to Out-of-Model
faults. An alternate approach could be to use clever codeword
organization [36], [42], [72], but those either leave no space
for security metadata such as MACs or fail to cover some
errors due to the symbol alignment limitations (Section II-B).
An alternative to both of those could be using multiple ECCs
simultaneously, i.e., one per fault model, which will lead to
storage overheads beyond the 25% provided by the DDR5
standard. Hence, we face an interesting challenge: How can
we design a multi-fault-model ECC without prohibitive storage
or runtime overheads?

In this work, we address this problem with security-
reliability co-design and develop a novel memory error cor-
rection scheme. Our approach, Polymorphic ECC, uses secure
keyed MACs for error detection and iterative error correction
to correct errors due to various fault models. Polymorphic
ECC poses no restriction on the MAC itself, and thus, any
MAC satisfying the security constraints of the system can be
used, preferably with high resistance to collisions, to improve
error detection capabilities. As a result, with Polymorphic
ECC, fewer errors are categorized due to Out-of-Model Faults,
improving system reliability guarantees.

V. DESIGN OF POLYMORPHIC ECC

In this section, we describe the construction of Polymorphic
ECC for DDR5 memories and how remainder polymorphism
allows for wider symbols and correction of errors due to
different fault models.

A. Polymorphic ECC overview

The core of Polymorphic ECC is strong error detection via
MAC per cacheline. There are two possibilities to protect data
with MAC and ECC: (1) ECC bits derived from data, both pro-
tected by the MAC, and (2) first, the MAC is computed from
the data, and then ECC protects both. The downside of the first
approach is that errors in MAC are not correctable, resulting

DATA MAC SLICE ECC

64 bits 16 bits

dataword #0

dataword #1

dataword #7

ECC #0

ECC #1

ECC #7

40-bit
MAC h

(b)

(a)

codeword #0

codeword #1

codeword #7

Fig. 6: (a) The MAC is computed on 64B of data, and dis-
tributed across eight codewords, whose ECC bits are computed
on respective data and MAC slice. (b) Codeword structure of
Polymorphic ECC: data (gray), slice of MAC (white), and
redundancy bits (dark gray).

in high rates of detectable but uncorrectable errors. With the
second approach, the bits of MAC are equally distributed
among the codewords and protected by ECC along with data,
as shown in Figure 6(a), converting previously uncorrectable
errors into correctable ones. Figure 6(b) shows an example of
Polymorphic ECC configured with 8-bit symbols, where each
codeword stores 64-bit data and 16 bits of MAC and ECC,
and the multiplier value determines how many of the available
16 bits are ECC bits. For example, the smallest multiplier
with 8-bit symbols is 511, leaving 56 bits per cacheline
for MAC. Next, we describe code construction, the error
correction process, and an optimized version of remainder-
to-error mapping.

B. Code Construction and Remainder Aliasing

Multiplier Search Procedure. A pseudocode implementation
outlined in Algorithm 1 checks if a multiplier M can define
an instance of Polymorphic ECC with N symbols of S bits
each. If the multiplier defines a code, the algorithm will also
compute the aliasing degrees for each remainder. For each
symbol in the codeword, the code computes its bit offset in
the codeword (line 2) and then computes a list of integer
values for all the errors of that symbol (lines 3-4). Then,
for each of the error integers, their remainder modulo M
is computed (lines 5-7) and adds the result to the set of all
symbol remainders, REMS (line 8). We compute the remainder
for positive and negative error integers to account for both
directions of bit flips (see Section II-B) and update the counts
for their aliasing degrees (line 9). We terminate the check early
if we do not have enough unique remainders to cover all errors
in symbol (line 10). Otherwise, we continue until all symbols
are checked (line 12). We return True and the histogram of
aliasing degrees for a multiplier that has enough remainders
in each symbol. For example, multiplier M = 511 has enough
remainders to define a 10-symbol code with 8-bit symbols.
Remainder Aliasing and Error Candidates. As we see
from the pseudocode, unlike MUSE ECC, which relies on
remainder uniqueness, Polymorphic ECC allows remainder
aliasing between error integers in different symbols because

9 10 11 12 13 14 15 16
Multiplier budget [bits]

0

2

4

6

8

10

12

Al
ia

si
ng

 D
eg

re
e

56
48

40
32

24
16

8

MAC size [bits]
MIN(Aliasing Degree)
MAX(Aliasing Degree)

Fig. 7: The trade-off between multiplier size, average min/max
aliasing degree per multiplier, and MAC size (8-bit symbols).

the remainder value is not used to localize the error. Thus, in
Polymorphic ECC, one remainder can correspond to several
error integers in different symbols, and we call this num-
ber remainder’s aliasing degree. For example, for multiplier
M = 511, the remainder R = 1 has aliasing degree of ten
and is mapped to error integers: 1, 512, 1023, etc.

Furthermore, we make several important observations. First,
with remainder aliasing, we need smaller multipliers than
MUSE ECC to define a code because we don’t have to
have a one-to-one mapping between all the errors in the
codeword, only within one symbol. Thus, Polymorphic ECC
is more storage efficient than MUSE ECC. For example,
M = 511 provides SDDC guarantees and uses only nine bits
of redundancy compared to the 12 bits needed by MUSE ECC.
Second, due to aliasing and storage efficiency, Polymorphic
ECC works with 8-bit and 16-bit symbols and standard 40-
bit memory channels, an impossible task for MUSE ECC.
Third, unlike MUSE ECC, where errors with remainder of
zero would be misdetected, Polymorphic ECC relies on MAC
for error detection, and thus can detect and correct such errors.
Finally, the aliasing degree of a multiplier determines how
many error candidates we have to try in the worst case to
correct an error. Thus, by choosing a smaller multiplier value,
i.e., a bigger aliasing degree, we make correction times longer
but gain more space for the MAC, as we can see from Figure 7,
which shows how with smaller multipliers, the aliasing degree
and available space for MAC are increasing. The error-bars
indicate, that some multipliers in the same bit-budget may have
dramatically different aliasing degree. In Section VIII-A we
show multiple variants of Polymorphic ECC differing in their
MAC size as an example of this trade-off, while in the next
section, we explain how Polymorphic ECC corrects errors.

C. Multi-Fault Model Error Correction

The error correction of Polymorphic ECC is based on the
concepts of remainder polymorphism and iterative correction.
Remainder Polymorphism. The key feature of Polymorphic
ECC is remainder polymorphism, i.e., its ability to interpret
each remainder in different fault models. In practice, once
the error is detected and its remainder is computed, we use
the remainder’s value to compute remainder-error mappings
of each supported fault model to derive error candidates for
correction. For example, the remainder of 86 can correspond
to either a single bit flip in the second symbol or a four-bit

Compute ECCDATA FROM MEMORY

NO YESErrors?

FAIL

PASS

Compute MAC
NO

YES

Error Patterns
Exhausted?

Correct w/ one
Error Pattern

UNCORRECTABLE ERRORCORRECTED / NO ERROR

MAC CHECK

REMAINDER
NOT FOUND

Update ECC

Fig. 8: The iterative process of error correction. The error is
corrected when MAC check passes, otherwise an uncorrectable
error is reported.

error in the first: 4096 mod 2005 = 86 mod 2005 = 86
(86 = 0101 01102). As a result, we use single redundancy
budget to cover many fault models that typically require more
than one code, e.g., we can provide SSC, Double-error, and
double Bounded-Fault correction in one code.
Iterative Error Correction. Figure 8 shows the process of
error correction with Polymorphic ECC. First, the cacheline
with its redundancy is read from memory, and remainders
are computed for each codeword in the cacheline. If those
remainders are zero, then a new MAC is computed from the
data and verified against one stored in the cacheline. If they
match, we declare no error and continue (we discuss Update
ECC next). Otherwise, we start correcting by iterating through
possible error candidates in all supported fault models until
the error is corrected. Otherwise, an uncorrectable error is
reported. After each correction attempt, we use the data from
the corrected cacheline to compute a new MAC and compare
it against one stored in the cacheline. Thus, if the MAC in
the cacheline is corrupted by a correctable error, one of the
attempts will correct it, and it will match one computed from
the data. There is a small chance that one of the correction
attempts will lead to MAC collision and silent data corruption,
and we evaluate that chance in Section VIII-C.

Since MAC does not guarantee the integrity of ECC bits,
there may be a situation where data and the MAC match,
but ECC bits were miscorrected. The Update ECC step
mitigates this issue: if the last iteration corrected errors in
ECC bits, we compute new ECC bits from matching data and
MAC, compare them, and report to the memory controller if
a mismatch is detected. In our experiments, the rate of such
errors was extremely low: ≈ 3.7 in 1,000,000. Thus, since
those errors are consistently detectable and correctable, we do
not expect to see an impact on performance or reliability.

Let’s see the following example of iterative correction with
multiplier M = 2005 and 10-symbol codewords that store
(from the right, Figure 6(b)) 11-bit ECC, a 5-bit MAC slice,
and 64-bit data. Let’s assume that upon reading the cacheline,
one codeword’s remainder is R = 86, indicating an error.
With M = 2005, R = 86 has two error candidates: (86,

TABLE III: Remainder Aliasing Degree vs. Multiplier Value

Multiplier 511 2005

Aliasing Degree 10 1 2 3 4 5 6 7
Remainder Counts 510 368 520 528 328 130 22 2

Algorithm 1: Compute aliasing degrees.
input : Multiplier M, number of symbols N, symbol width S
output: True if M defines a code and its aliasing degrees
/* Initialize empty REMS and ALIAS_DEG */

1 for symb pos in 0..N-1 do
/* generate err_ints for symbol at symb_pos */

2 err_offset = symb_pos×2S
3 foreach err_int in 1..2S − 1 do

/* all symbol errors */

4 add (err_int<<err_offset) to AllErrInts
5 foreach err_int in AllErrInts do

/* Remainders for both errors */

6 remp = err_int mod M
7 remm = -err_int mod M
8 add remp and remm to set REMS
9 update counts for remp and remm in ALIAS DEG

10 if len(REMS) 6= 2× len(AllErrInts) then
/* terminate, not enough remainders for

correction within symbol */

11 return (False, ∅)
12 return (True, ALIAS_DEG)

symbol-0) and (16, symbol-1). Suppose the error is in symbol-
1, representing a bit flip in the MAC slice: error integer
err int = 16 << 8 =0x1000. Following the flow in
Figure 8, we use the first error candidate, i.e., (86, symbol-
0), to correct the error: C corr = C −Error(86, symbol-0)
After the correction, we compute a new MAC value, and
compare it against the one read from memory. Since the
MAC read from memory still has one bit flipped, with high
probability, we detect a MAC mismatch, discard the result
of the prior correction, and try the next error candidate:
C corr = C − Error(16, symbol-1). We check all the
remainders again, recompute the MAC, and compare it against
the one read from memory. Unlike the first time, the second
error candidate corrects the error in the MAC slice, and the
cacheline passes the MAC verification step. At this point we
recompute and compare ECC bits, signal to memory controller
if a mismatch is detected, and report a Correctable Error.
Correction Latency. Since the number of error candidates per
remainder is determined by the aliasing degree, the number of
iterations it takes to correct the error depends on the multiplier
value we chose. For example, Table III shows a histogram
of the remainder aliasing degree for two Polymorphic ECC
SDDC codes with multipliers 511 and 2005, having 56-bit
and 40-bit MACs, respectively. For example, with M = 511,
every remainder is aliased to 10 different errors, i.e., an error
per symbol. With M = 2005, on the other hand, the majority
of remainders have an aliasing degree of three, and only 2 are
mapped to seven symbols. Thus, since the errors are corrected
at cacheline granularity, in the worst-case scenario where each
codeword in the cacheline is corrupted, with M = 2005, only

78 corrections are required instead of 108 with M = 511
– an improvement of 17×! In the typical case, however, the
number of iterations is significantly lower – only 228. The
main reason for this reduction is that only a tiny minority
(2/1898 = 0.1%) of errors have an aliasing degree of seven,
and it is highly unlikely that errors in all the codewords in the
cacheline would map to a remainder with an aliasing degree of
seven (we evaluate error correction latency in Section VIII-C).
Thus, with Polymorphic ECC, error correction speed can be
traded off for stronger MACs at fine granularity, allowing
deployment-specific customizations.

D. Remainder-Error Mapping

The simple solution to determine error candidates per re-
mainder is to use lookup tables as in MUSE ECC. However,
we realize that we can minimize storage overheads by deriving
error value at runtime with the reverse relationship between
the errors and remainders:

err int = (R× Inv(2L)) modM (2)

where err int is the integer representation of error in a
symbol that starts at bit offset L (line 2 in Algorithm 1), and
Inv(2L) is the multiplicative inverse modulo M of the symbol
at bit L, i.e., (2L × Inv(2L)) mod M = 1. By construction,
err int has to fit into the symbol width. Otherwise, we know
that the symbol that starts at bit L has no error with remainder
R. For example, let’s solve this equation for symbol-1 and
symbol-2 and remainder R = 86 for M = 2005. With the
Inv(28) = 1026 and Inv(216) = 51, we get err int1 = 16 and
err int2 = 376. Since, err int2 does not fit into an 8-bit
symbol, we discard it, while keeping err int1 as it is a valid
error candidate for symbol-1. This way, for SDDC we do not
need to store the mapping of remainders to errors, as we can
derive those at runtime.

For the fault models with two corrupted symbols, e.g.,
double bounded fault, the naı̈ve approach of finding two
symbol errors that result in remainder R is computationally
expensive because it requires to solve a system of equations.
Thus, we store hints with locations of the errors and the error
value for one of them. Then, we can easily solve the following
equation to derive the error value for the first symbol:

err int1=(R−err int2×Inv(2L1))×Inv(2L1) mod M (3)

We discuss the format of the hints in Section VI-B and evaluate
storage overheads in Section VIII-D.

VI. MICROARCHITECTURE

A. System Integration

Figure 9(a) shows how Polymorphic ECC is integrated
within memory write and read paths in the system. On the
write path, first, the MAC is computed for each cacheline,
then the MAC is sliced, and each slice is embedded into one
codeword. Finally, an ECC is computed for both the MAC
slice and the data, attached to the codeword, and it is written
to memory. On the read path, the decoder (Figure 9(d)) for
each of the codewords computes both the remainder and its

error-candidate entry (Figure 9(b)-(c)). After the decoding,
CW_AGGRTR gathers all the codewords and recovers the em-
bedded MAC to compare it with one computed from the data.
If MACs match we output the data to the CPU. Otherwise,
we start iterative correction to correct errors in the cacheline
and its MAC. We check the result by comparing the MAC ex-
tracted from the corrected cacheline (CORRCTD_EMBD_MAC)
with one computed from corrected data (NEW_MAC). When
MACs match, we use the MATCH signal to stop the correction.
If MACs never match after all error candidates are tried, we
declare an uncorrectable error by setting DUE to true.

B. Error-Candidates Generation

Figure 9(b) shows how P_ENTRY stores the information
from the Error-Candidate Generator or ECG (Fig-
ure 9(c)) in the decoder (Figure 9(d)) about the remainder’s
error candidates. The ECG uses an ERR_INT_GEN unit per
symbol, i.e., implements Eq. 2, or, for the double symbol
fault models, each unit implements Eq. 3 by using hints, i.e.,
locations of faulty symbols and one error integer.

In general, P_ENTRY has a header and an aliasing degree
number of sub-entries, where the header specifies the number
of usable sub-entries as some remainders have no aliases. Each
P_ENTRY can be used for either single or double-symbol
fault models, and the main difference is in the information
stored in each sub-entry. For example, for the single symbol
model, each sub-entry stores the symbol’s position and error
integer, which the corrector uses to correct the error. For
the double symbol models, each sub-entry stores the location
of both faulty symbols and the err int of the first symbol
error (the second one is derived by Eq. 3). For example, for
DDR5 SDDC with 8-bit symbols, each sub-entry is 13 bits and
P_ENTRY itself is 81-bit long (header and six sub-entries).

C. Encoding and Decoding

The encoder (gray box in Figure 9(a)), decoder (Fig-
ure 9(d)), and the ECG (Figure 9(c)) use fast modulo circuits,
which we implemented following the methodology from the
original MUSE ECC paper [51]. Our decoder computes code-
word’s remainder and uses it to derive P_ENTRY with error
candidates (or load and derive for double-symbol faults). Since
the common case is no errors, the decoder passes the codeword
to the output with minimal delay. In contrast, the P_ENTRY’s
sub-entries are pruned and reordered by the PRUNER &
REORDERER circuit. This circuit outputs P_ENTRY but with-
out sub-entries, which, if used for correction, will cause an
overflow (or underflow in case of subtraction) in the symbol.
For example, if the stored error integer is “-10” and the
symbol value is “5”, the result of correction will be “-5”, an
underflow. An underflow (or overflow) happens due to aliasing,
and eliminating those entries speeds up error correction.

D. Iterative Error Correction

Figure 9(e) shows the Iterative Corrector’s microarchitec-
ture. The inputs are the STOP signal, the codewords, and their
P_ENTRYs. The outputs are LAST_ITERATION to signal no

SUB-ENTRY
#1N_ENTRIES

3 bits

SYMBOL
POSITION CORRECTION VALUE

4 bits 9 bits

CODEWORD

REMAINDER
MOD M

P _ENTRYERROR-CANDIDATE
GENERATOR

REORDERED
P_ENTRY

PRUNER_REORDERER

CODEWORD

(d)

N_ENTRIES_1
LAST_ITERATION

(e)

CODEWORD_1
P_ENTRY_1

ITER_CNT_1

EMBD MAC + DATA #1SYMBOL
CORRECTOR #1

EMBD MAC + DATA #2 .. #8CODEWORD_2 ... 8

P_ENTRY_2 ... 8

STOP ITERATION DRIVER

(a)

DECODER
CODEWORD

CW_AGGRTR
CODEWORD

P_ENTRY

ITERATIVE
CORRECTOR

P_ENTRIES

CODEWORDS

MAC
CALC

MATCH

STOP

=?=

NEW_MAC
MUX

DUE

DATA_OUT

MUX

DATA

CORRECTED_DATA

CACHELINE
DATA MAC CALC MAC EMBEDDER

MEMORY READ

CODEWORD
mod M

512b

H bits (64 + H/8) bits 80b
MEMORY WRITE Encoder

EMBD_MAC

MUX

CORRCTD_EMBD_MAC

LAST_ITER

SUB-ENTRY
#2

SUB-ENTRY
#N...

ERR_INT_GEN_0

ERR_INT_GEN_1

remaining
generators

(b)

(c)

REMAINDER

P_ENTRY
AGGRTR

P_ENTRY

Fig. 9: (a) System integration of Polymorphic ECC. The upper half shows memory write path with MAC embedding and
codeword encoding, while lower half shows memory read and error correction. (b) Format of the P_ENTRY: 3-bit header,
and 13-bit sub-entries with fault position (four bits) and signed error integer (nine bits). (c) Error-Candidate Generator unit,
where each ERR_INT_GEN implements Eq. 2 or Eq. 3 (table with hints is not shown). (d) Decoder consists of remainder
calculation unit (modM), error-candidate generator (generates P_ENTRYs), and PRUNER & REORDERER to filter P_ENTRYs
for subsequent error correction. (e) Iterative Corrector (for brevity only codeword1 is shown).

Algorithm 2: Counting For Iterative Correction
input : Counter Limits limits, Stop
output: Counters, Last_Iteration

1 Last_Iteration set to 0
2 while not Last_Iteration do
3 increment counter[0]
4 foreach counter[i], i in Counters do

/* Start from lowest counter: i is 0 */

5 if counter[i] == limits[i] then
6 counter[i] set to 0
7 if i is last then
8 set Last_Iteration to 1
9 else

10 increment counter[i+1]
11 yield Counters, Last_Iteration

more error candidates to try and data with MAC slices after
the correction attempt. The STOP signal stops the iterative cor-
rection signal once MACs match. The ITER_DRVR unit uses
the header fields of (already pruned and reordered) P_ENTRYs
to determine the number of error candidates per codeword. In
a nutshell, ITER_DRVR is a multidimensional counter where
the header field of P_ENTRY limits each dimension, and in
each clock cycle, only one counter value is incremented (see
Algorithm 2 for pseudocode implementation). These counter
values select error candidates per codeword for the correction.

Consider a toy example with two codewords, C1 and
C2, whose P_ENTRYs have headers with values 3 and 2.
During the correction, the ITER_DRVR will generate selector
counters as (1, 1), (2, 1), (3, 1), and (3, 2). For example, with
(1, 1), both codewords will use their first error candidates. If,
after the correction, MAC verification fails, ITER_DRVR will
select (1, 2), i.e., C1 will use its first error candidate, while
C2 will be corrected with the second. For each correction
attempt, we use the cacheline as it was read from memory.
The correction procedure repeats until the corrector tries all
covered fault models (LAST_ITERATION is raised) or MACs
match (indicated by STOP). When LAST_ITERATION is
raised, the DUE is set to report an uncorrectable error.

VII. EXPERIMENTAL METHODOLOGY

A. Estimation of the Out-of-Model Fault Rate

Unfortunately, there is little evidence of the actual Out-
of-Model Fault rates in real systems today. Most recent
studies (e.g., [8], [12], [67], [79]) use ECC and its logging
infrastructure in CPUs to measure the rates of correctable and
detectable errors, which by itself will distribute Out-of-Model
errors as either correctable or detectable and also will skew
the In-Model Fault rate [7]. To illustrate this point, let us
consider a simple example with Hamming SEC-DED ECC.
Say memory has 100 errors, with 80 single-bit, ten double-
bit, and ten triple-bit errors. Suppose we use the ECC to
classify those errors. In that case, by using miscorrection rates
from Table II, we will measure 87 single-bit and 13 double-
bit errors, completely ignoring the existence of triple-bit errors
and overcounting the single-bit error rate by almost 9%. While
some may argue that SEC-DED ECC is not designed to handle
triple-bit errors, using ECC logging undercounts Out-of-Model
Fault rates due to miscorrection as evidenced by the following
equations:

Nsingle error + 0.7×Ntriple error = 90

0.3×Ntriple error +Ndouble error = 10
(4)

As a result, since we have only two equations for three
variables, we cannot determine the real fault rate as there is an
infinite number of solutions that satisfy these equations. Thus,
in our evaluation, when comparing Polymorphic ECC with
other memory reliability schemes, we will compare SDC rates
per fault model for each scheme. Those result can be weigthed
to estimate code performance for specific fault distributions
and system’s operating settings to estimate overall reliability
guarantees with Polymorphic ECC.

For the comparison, we evaluated two classes of codes. First
is the SDDC RS code, miming those in commercial products
[21], [46], and second is Unity ECC [41], and Bamboo ECC
[42], which cover more fault models than SDDC RS. Unity
ECC extends SDDC RS code to cover double-bit errors, while
Bamboo ECC uses long (half cacheline and full cacheline

with 8-bit and 16-bit symbols, respectively) RS codewords
with symbols aligned to DRAM pins. To provide ChipKill
guarantees, Bamboo ECC corrects four symbol errors, i.e.,
symbol per pin of a failing DRAM device.

B. Fault Injection Methodology

To emulate miscorrected errors that propagated to the
memory state of the application, we use CRIU (Checkpoint
and Restore In Userspace) – a Linux utility that checkpoints
the program’s memory state to disk and restores it later for
execution. In a nutshell, we checkpoint a program at the
time tinj , randomly pick an injection address Ainj in the
checkpoint, and then resume execution, effectively modeling
a case of a program with corrupted memory.
Injection Times and Addresses We profile the programs to
ensure that injection times tinj are uniformly sampled and
cover the entire program’s lifetime. To inject the fault at
time tinj , we use the sleep utility to delay CRIU checkpoint
command by tinj . After the checkpoint, we uniformly pick a
random injection address Ainj in its address space. This way,
the injection time and address are randomly sampled from the
program’s memory state. We use the same checkpoint state,
tinj , and Ainj , for both encrypted and non-encrypted memory
models to guarantee that both experiments represent the effects
of the same fault in memory, with the only difference being
the amplification of the error by encryption, as described next.
Memory Errors Generation We profiled the RS code to
obtain errors that represent DRAM failures leading to miscor-
rection. For each injection, we randomly select one of these
errors, einj , and use it to corrupt the checkpoint at address
Ainj in both memory models. For the plaintext memory
model, we use the profiled errors as-is. For the encrypted
memory model, we create encryption-amplified errors: we
encrypt the cacheline at address Ainj with AES, corrupt the
ciphertext with einj , and then decrypt it. As a result, the
decrypted cacheline is corrupted with an encryption-amplified
error pattern. We write this cacheline back into the memory
image and resume execution. This process simulates how the
application’s memory state would be corrupted if it were
running on a system with memory encryption and experienced
a DRAM failure miscorrected by RS ECC.
Outcome Classification In line with prior work [39], we
assume that if the program’s execution is longer than 3× of
its remaining error-free execution time, it enters a bad state,
and we terminate it. We categorize injection outcomes into the
following categories:
• Hang – program execution is longer than 3× its normal

execution time after the injection.
• Crashed – segmentation fault during execution.
• Silent Data Corruption (SDC) – program finished in time,

but the output differs from the error-free execution.
• No Effect – program finished in time as in fault-free case.

C. Experimental Setup

Fault Injection. We use the methodology by Leveugle et al.
in [47] to get 95% confidence level with 2.1% error margin

with 2000 injections for each workload. To study general-
purpose workloads, we use SPEC-2017 CPU benchmark suite
updated to v1.1.9 compiled with g++ 11.3.0 with -O3 op-
timization level under Ubuntu 22.04 for aarch64. To reduce
execution times, we use train inputs for the benchmarks.
Inference We relied on ONNX Runtime C++ APIs and the
ONNX neural network model to study inference workloads.
We used the image classification Mobilenet v2 ONNX model
for the ML experiments with the ImageNet 2012 validation
dataset. We randomly sampled 2,500 images from the 50,000
available to keep runtimes reasonable. For the FHE experi-
ments, we relied on the HE-Man-Concrete Library [57], [77].
Given the long execution times of the FHE inference, we
used 100 images from the MNIST database of handwritten
digits and the classification ONNX model from the HE-Man-
Concrete GitHub repository.
Performance Analysis. To measure the impact of Polymor-
phic ECC’s hardware and its latency, we modified gem5 [9]
simulator, so that writes are delayed, emulating the addition
of encoders and MAC unit. Since Polymorphic ECC is a
systematic code, there is no delay on the read path. We used
SPEC’17 benchmarking suite, updated to the v1.1.9 [10],
compiled with GCC 9.4.0 and optimization level -O3 under
Ubuntu 20.04. We configure gem5 with 3.4GHz CPU, 64kB
K1, 256kB L2 for each core, 8MB of L3, and 32GB of RAM.
To get a conservative estimate on the performance impact, we
used TimingCPU, which models memory accesses in detail,
while executing instructions in one clock cycle. We executed
the benchmarks for 400M instructions with reference inputs.

VIII. EVALUATION

In this section we answer the following research questions:
A) How Polymorphic ECC can be configured?
B) What fault models Polymorphic ECC covers?
C) How fast Polymorphic ECC corrects errors?
D) What are the hardware and performance overheads of

Polymorphic ECC?
E) How does Polymorphic ECC corrects Rowhammer-

induced errors?

A. Polymorphic ECC Configurations for DDR5

Unlike MUSE ECC, which is limited to 4-bit symbols
and wide memory channels, Polymorphic ECC supports 8-bit
and 16-bit symbols, which alleviate the need for wide mem-
ory interfaces and reduce the overall power of the memory
subsystem. Table IV shows various DDR5-compliant variants
of Polymorphic ECC with their supported fault models. We
discuss the main differences between the configurations due
the symbol size and the multiplier value.
Symbol Size. Symbol size affects code configuration in two
ways: wider symbols increase codeword size, and require
larger multipliers. For example, when we increase symbols
size from 8-bit to 16-bit, the codeword length increases from
80 to 160 bits, taking twice as many beats to read or write
from memory. In addition, since wider symbols have more

TABLE IV: Aliasing Degrees or Fault Models

Symbol M Fault Model Aliasing Degrees MAC
Size Max AVG±STD bits

16b 131049 SSC 11 10± 0.04 60
DEC 3 1.14± 0.38

8b

511 SSC 10 10± 0 56

1021 SSC 10 5± 1.58 48
DEC† 18 11.27± 2.45

2005

SSC 7 2.69± 1.23

40DEC 12 5.75± 2.05
BF+BF 101 78.81± 6.50
ChipKill+1 436 355± 14.50

†: bold shows a new fault model enabled by a larger multiplier value.

possible errors, they need more remainders and thus larger
multiplier values. For example, with 16-bit symbols, we need
a multiplier of 131,049 compared to 1021 for 8-bit symbols
to support the same fault models.
Multiplier Values. The multiplier value directly affects what
fault models are supported by the code, average error correc-
tion latency, and length of the MAC. First, larger multipliers
have enough remainders for fault models with many errors,
e.g., ChipKill+1 has 183,600 errors compared to 2,550
of ChipKill. Second, for the same symbol size, larger
multiplier value has lower aliasing degree, which leads to
fewer iterations to correct an error. For example, for the SSC
fault model, the average number of iterations decreases from
570,421 for M = 511 to 6620 for M = 1021 and 228 for
M = 2005 (Section VIII-C for more details). Thus, for the
same redundancy budget it is preferable to use the largest
multiplier that satisfies all the constraints. In addition, some
multipliers do not map zero remainder to errors, which ensures
that in the common case of no errors no time is spent to correct
an error that may not exist. For example, both M = 2041 and
M = 2005 support DEC and BF+BF fault models. However,
with M = 2041 DEC and BF+BF have 2 and 102 errors
mapped to zero remainder, which is not the case with 2005.

However, some fault models have errors that map to zero
remainder, e.g., ChipKill+1 with 218 errors mapped to zero
remainder. To minimize the impact on performance of those
models in the common case, we propose to check against this
model last, and do so in two phases. First, we ignore the errors
that mapped to zero remainder. If the error persists after phase
one, we try again without excluding error that map to the
remainder of zero. This way, we exclude a very small number
of errors (218 out of 183,600), while minimizing the impact
on the common case.

Overall, Polymorphic ECC’s family of codes is flexible,
works with several symbol sizes, and may be adapted to other
memory technologies like HBM3 [35]. However, since the
interfaces and fault models of HBM3 differ from DDR5, a
detailed study is required to assess necessary tradeoffs.

B. Fault Coverage with Polymorphic ECC

Table V compares the error correction performance of
Polymorphic ECC and other codes across various fault models:
ChipKill – corrupts every codeword at the same symbol

with random error, SSC – random symbol error in every
codeword, DEC – two random single-bit errors in a codeword,
BF+BF – aligned double bounded fault per codeword, and
ChipKill+1 – ChipKill with a failed pin on a second
DRAM chip. We see fault coverage of each code, i.e., In-
Model vs. Out-of-Model, where the reported data is for Out-
of-Model faults in cells with a gray background. Polymorphic
ECC supports all fault models as In-Model, while Unity ECC
is the second supporting ChipKill, SSC, and DEC. Bamboo
ECC covers only the ChipKill model due to its pin-aligned
symbols. Thus, Unity ECC and RS cover the SSC model,
while Bamboo ECC does not because in SSC, the codewords
may have errors originating from different chips, which will
corrupt more than four pin-aligned symbols of Bamboo ECC.

Based on the fault model coverage, we see that Polymorphic
ECC is the only code that corrects all errors. Other codes
correct only a subset of the fault models, e.g., Unity ECC
corrects ChipKill, SSC, and DEC, while Bamboo ECC
corrects only ChipKill errors. However, due to its iterative
nature, there is a non-zero chance that Polymorphic ECC will
have MAC collision in one of the iterations, leading to an SDC.
We analyze SDC rates in detail in Section VIII-C. However,
unlike other codes, Polymorphic ECC not only covers more
errors but also provides in-lined MACs for security, which is
especially important today with an increasing focus on security
and confidential computing [4], [11], [16], [25], [40], [52].

C. Analysis of Iterative Error Correction

Here, we study how long it takes to correct an error and
what is the chance of miscorrection. To do so, we created
105 random cachelines that were corrupted according to the
respective fault model. For each of the fault models, we
conservatively assume that every codeword has an error, e.g.,
for the SSC fault model, every codeword in the cacheline has
one symbol-error, corresponding to an average bit error rate
of ≈ 5× 10−2. The errors were fixed iteratively as described
in Section V-C, and summarized the results in Table V.
Latency. As shown in Figure 8, the iterative correction
latency is due to error correction attempts and consequent
recomputations of the MACs. Thus, we can separate the
latency into fixed and variable parts. The fixed cost, Tfix,
is due to the codeword decoding, generation, pruning, and
reordering of error candidates: Tfix = Tdec + Tpruning .
The variable part, Tvar, is due to the error candidate se-
lection, correction, and MAC verification repeated N times:
Tvar = N × (TITER_DRVR + TECG + TMAC) = N × Tvar,0.
Overall, for the N-iteration correction, the latency is T (N) =
Tfix+N×Tvar,0. Using hardware implementation results from
Section VIII-D, the total latency is Tcorr = 3.98+5.36×N ns.
For example, ChipKill has the shortest correction time,
requiring only one iteration, or 9.34 ns, shorter than the
reported correction times of Intel’s CPUs [14]. Polymorphic
ECC’s correction latency is also shorter than that of other
MAC-based ECC schemes. For example, CSI:Rowhammer has
an average correction time of five hours for an 8-bit error,
which is due to the use of parity to limit the search space,

TABLE V: Fault coverage and error correction performance of Polymorphic ECC and other codes.

Symbol Fault Polymorphic ECC Reed-Solomon Unity ECC [41] Bamboo ECC [42]
Size Modelα # Iters, Avg±Std SDC DUEβ SDC DUE SDC DUE SDC DUE

16b
ChipKill 1.30± 0.56 1.13× 10−18

N/A
0 0 0 0 0 0

SSC 468± 407 4.1× 10−16 0 0 0 0 0 0.999
DEC 1.64± 1.25 1.43× 10−18 0.2 0.98 0 0 0 0.999

8b

ChipKill 1 0

N/A

0 0 0 0 0 0
SSC 228± 493 2.1× 10−10 0 0 0 0 1.7× 10−5 0.998
DEC 554,132± 1,073,304 5.0× 10−7 0.024 0.976 0 0 2.5× 10−5 0.999
BF+BF 65± 108 5.89× 10−11 0.03 0.97 0.065 0.871 2.2× 10−5 0.999

ChipKill+1 4,464± 7,516 4.1× 10−9 0.03 0.97 0.062 0.813 2.4× 10−5 0.999
8b Rowhammer Patterns 2.52± 5.80 0 1.7× 10−4 4× 10−4 11.3× 10−3 0 2.5× 10−4 0 0

α: 80-bit codewords with symbol folding [21]. β: All errors are correctable. Out-of-Model Faults for respective codes.

which is prone to hide errors and thus needs more steps to
identify those, e.g., two-bit error within the same symbol [38].

While variable error correction latency is acceptable [14],
[75], it has to be small enough not to convert a benign error
into a denial-of-service event, e.g., Intel SGX processor lock-
down [24], [32], making workload migration due to a memory
failure, a common feature of deployments at scale [17], [28],
challenging. With Polymorphic ECC, correction latency can be
bounded in multiple ways. First, fault models with long correc-
tion latencies may be disabled without significantly impacting
error coverage, e.g., DEC, since BF+BF and ChipKill+1
cover most of the double-bit errors. In this case, the longest
correction latency would be 3.98+ 5.36× 4, 464 = 23.93 µs.
An alternative approach is to limit the number of error cor-
rection iterations to Nmax while supporting all possible fault
models, declaring DUE if MACs do not match after Nmax

iterations. For example, for the 8-bit symbol code, 99.73% of
the errors (3-sigma) are corrected within Nmax ≈ 3,000,000,
leading to T = 3.98 + 5.36 × 3,000,000 ≈ 16.1 ms, which
is comparable to correction latencies of some Intel CPUs
[14]. As a result, Polymorphic ECC can be tuned to various
deployment settings while providing better error coverage than
comparable codes.

Reliability. As we see from the table, Bamboo ECC has the
lowest SDC and highest DUE rates among RS-based codes
for Out-of-Model faults. This outcome is expected because
Bamboo ECC uses long codewords and large symbols, a
common technique to minimize SDC rates [36], resulting in
SDCs being converted into DUEs. For those fault models,
the 8-bit-symbol Polymorphic ECC has at least 100× lower
SDC rates than Bamboo ECC, while with 16-bit symbols,
Polymorphic ECC comes in second with extremely low SDC
rates of 1.43×10−18. Overall, except for the ChipKill fault
model, Polymorphic ECC is expected to have non-zero SDC
rates due to iterative correction.

However, in actual deployments, those rates may be even
lower. First, the SDC rates with Polymorphic ECC heavily
depend on the operational environment and bit error rate.
Figure 10 shows how the average error correction iteration
count behaves with an increase in the number of corrupted
codewords, a proxy metric we use for bit error rate. From
the figure, we see that both the number of iterations (gray

1 2 3 4 5 6 7 8
Codewords With Error/Cacheline

101

102

103

104

105

106

Av
er

ag
e

It
er

at
io

n
Co

un
t

2.00

Average Iteration Count
SDC Chance

10 368 14402 554132
10 4

10 3

10 2

10 1

100

SD
C

Ch
an

ce
 [

×1
0

7]

Fig. 10: The average number of iterations it takes to correct
a DEC error (gray bars) and SDC rate (red line) vs. number
of corrupted codewords per cacheline (as a proxy to BER). Y
axis is in log scale.

bars) and the SDC rates (red line) grow exponentially with the
increase in error rates, i.e., the number of corrupted codewords
per cacheline (Y axis is in log scale). From the shown SDC
trend, we can estimate that with more realistic error rates,
SDC rates of Polymorphic ECC would be much lower than
presented in Table V, which assumes the conservative scenario
of eight corrupted codewords per cacheline.

Second, the ECCs available in commercial CPUs tend to
be deployed conservatively [21], [41], prioritizing detection
over correction, essentially choosing ChipKill over SSC.
Moreover, to minimize the chance for Out-of-Model errors,
datacenter operators proactively replace DIMMs [18], [48]
after a specific number of correctable errors, as few as 100,
as reported in [53]. In those settings, the chance of SDC with
Polymorphic ECC after 100 errors is 1 − (1− pSDC)

100
=

2.1 × 10−8 (or 4.4 × 10−16 for 16-bit symbol code), where
pSDC is the probability of SDC for one SSC error (see
Table V). Thus, Polymorphic ECC is a practical alternative
to the RS-based codes as it covers more Polymorphic ECC
errors and provides data integrity with up to 60-bit MAC at
the cost of very low SDC rates.

In addition, workloads deployed at scale already heavily
use software-based checksums for in-memory data for SDC
detection [6], indicating that hardware-software co-design pro-
cesses are not new, and a promising avenue for future work is
to explore the software co-design with Polymorphic ECC to
lower SDC rates even further. As a result, Polymorphic ECC
offers superior error coverage than the RS-based codes and

TABLE VI: Hardware Implementation Results, M = 2005

Circuit Latency, ns Area, µm2 Power, W
Encoder/Decoder 2.52 25,565 1.801

Qarma [5] 1.636 22,549 2.95
ITER_DRVR 0.96 548 0.001

PRUNER & REORDERER 1.46 3,857 0.003
ECG (10 symbols) 2.76 46,319 2.156

ERR_INT_GEN (Eq. 2) 2.2 5,906 0.189
Symbol Size Hint Storage, kB

8b DEC: 17 BF+BF: 259 ChipKill+1: 892
16b DEC: 143 - -

can further reduce the memory share of datacenter ownership
costs, which are already similar to those of CPUs [50], e.g.,
fewer DIMM replacements and related workload migrations,
lower SDC rates due to Out-of-Model faults, etc.

D. Hardware and Performance Overheads

Hardware Overheads. We implemented our circuits in Ver-
ilog (Qarma’s implementation was available online1), and
synthesized with OpenROAD open-source VLSI toolchain
[2], [3] with integrated NangateOpenCell 45nm open-source
standard cell library [66]. The results are summarized in
Table VI. As expected, the longest latencies are Qarma and
units that use modulo computation circuits, i.e., ECG (uses
ten ERR_INT_GEN in parallel), encoders, and decoders. The
iterative corrector and pruner with reordering have smaller
latencies and area overheads. However, similarly to MUSE
ECC [51], compared to other codes, Polymorphic ECC uses
significantly more area and longer latency mainly due to
its reliance on integer multipliers rather than CMOS-friendly
XOR operations. For example, the encoder of Polymorphic
ECC has a delay of eight full adders and one carry-look-ahead
adder. In contrast, Unity ECC has only 7 XOR gates, which
is significantly faster. Given the die sizes of modern CPUs,
extra hardware of the Polymorphic ECC is not expected to
cause a significant area or power increase. For example, ARM
devices already implement Qarma in hardware, while Intel
TDX implements a KECCAK-512-based MAC unit [76].
Storage of hints. However, some fault models require solving
Eq. 3, which, as formulated, needs hints, i.e., symbol locations
and one error integer. The last two rows in Table VI show
the storage overheads of the hints. It is not uncommon
to use syndrome storage for error correction; for example,
some AMD CPUs use 10kB syndrome tables [1]. We leave
alternative ways to derive the hints at runtime, e.g., feeding
all possible combinations of fault locations to ERR_INT_GEN
units to find error integers that solve Eq. 3 to future work.
Performance Overheads. We used 4.2 ns on the write path
to account for the codeword encoding and computation of the
MAC (see Table VI). We assume TDX-like baseline, where
MAC decoding is always enabled. Figure 11 shows the results
of the execution, normalized to a baseline without delayed
writes. On average, performance penalty is ≈ 1%, while some
workloads showing slowdown of ≈ 3% (e.g., deepsjeng and

1https://github.com/ammrat13/spring2022-cs3220-aos

bw
av

es
ca

ct
uB

SS
N

de
ep

sje
ng

ex
ch

an
ge

2
fo

to
ni

k3
d

gc
c

im
ag

ick lb
m

le
el

a
m

cf
na

b
na

m
d

om
ne

tp
p

pa
re

st
pe

rlb
en

ch
po

vr
ay

ro
m

s
wr

f
x2

64
xa

la
nc

bm
k xz

AV
G

GM
EA

N

0.98

0.99

1.00

1.01

1.02

1.03

N
or

m
al

iz
ed

Sl
ow

do
w

n

Fig. 11: Normalized slowdown due to the encoder and MAC
unit of Polymorphic ECC.

roms). This is expected as writes are rarely on critical path,
and extra latency is small compared to the modern systems’
memory latencies, which are in 100s of ns range [13].

E. Rowhammer Case Study

In the last row of Table V are the evaluation results of
all the codes on 94,892 cacheline-long rowhammer patterns
kindly provided to us by Venugopalan et al. [73]. All the codes
corrected most of the patterns, as only 1113 out of 94,892
have more than one corrupted symbol per codeword: 1091
with double-bit errors and 24 with three-bit errors. The Reed-
Solomon code performed the worst, with SDC and DUE rates
of 4 × 10−4 and 11.3 × 10−3, respectively, while Bamboo
ECC outperformed all other codes as it can correct up to
four symbols, while the most severe patterns had three bit-
flips. Polymorphic ECC came in second with 16 DUEs (all
due to random triple-bit errors), correcting eight more three-
bit patterns that Unity ECC could not (24 DUEs). The main
reason for the better performance of Polymorphic ECC is
correctable bounded fault model (BF+BF), which Unity ECC
does not support, as some of the three-bit patterns were aligned
with double bounded faults. From the latency perspective, on
average, Polymorphic ECC corrected a rowhammer-induced
error in 2.68 iterations (with std_dev=7.49), which is much
faster than the conservative estimates for BER of 0.05 in
Table V. If we assume that benign and intentional rowhammer
errors we evaluated here are similar, Polymorphic ECC may
significantly raise the cost of a rowhammer-based attack and
correct many benign rowhammers, while also offering data
integrity with MACs in the common case.

IX. RELATED WORK

Historically, ECC used for main memory is based on codes
that use mod 2 arithmetic, as those were simpler to build and
thus more reliable [30], [49]. With DRAM becoming more
popular and the introduction of the internet in the 90s, memory
reliability became a marketable feature as we started to use
computers differently [15]: e-commerce, client-server model,
etc. These changes required stronger ECC than SEC-DED.
Since then, the de facto standard error correction offered by the
vendors today is Single DRAM Device Correct (SDDC) ECC
[21], [27], [69]. Higher guarantees would require trading off
memory parallelism [27], [69] or proprietary memory modules
[27]. Unlike those schemes designed for a single fault model,

https://github.com/ammrat13/spring2022-cs3220-aos

Polymorphic ECC covers multiple fault models using standard
redundancy budgets at the cost of iterative error correction.

Academic SDDC schemes aim to exceed guarantees of
SDDC via different approaches, which include co-design with
DDR5’s on-die ECC (e.g., DUO ECC [23], XED [55], OBET
[56]), use clever codeword organizations (e.g., Bamboo ECC
[42], Multi ECC [36], LOT ECC [72], and others), or data
duplication and disaggregation (e.g., Dve [59]). Others co-
design ECC for selective data protection (Context-Aware Re-
siliency [63]), or security (MUSE ECC [51], AFT-ECC [68]).
IVEC [31], SYNERGY [62], ITSEP [70], and more recent
SafeGuard [20] and CSI:Rowhammer [38], use MACs for
detection, and error correction through search. However, unlike
Polymorphic ECC, those solutions either restrict the search
space and, thus, error coverage or require interaction with the
OS and have correction times for multi-bit errors in the order
of hours (CSI:Rowhammer). In contrast, Polymorphic ECC
does it faster and needs no software support.

Another avenue for reliability-security co-design is to com-
bine tagging for memory safety, data integrity and confiden-
tiality, and resiliency to memory errors. Two recent solu-
tions, Voodoo [45] and HashTag [44], both use MACs for
error detection while also allowing some storage to be used
for memory safety tags. The core component of Voodoo is
MAGIC [43], a novel MAC design that combines encryption,
authentication, and error correction. With MAGIC, Voodoo
can embed up to 36-bit tags per cacheline while correcting a
subset of ChipKill errors. Similarly, HashTag trades off re-
liability by reusing ECC storage for tags and MAC. As a result,
the errors are corrected through search guided by parity bits,
resulting in long correction times. Both of those techniques
offer weaker reliability guarantees than Polymorphic ECC as
they convert Out-of-Model errors to DUEs. Moreover, since
Polymorphic ECC is MAC-agnostic, it can support memory
tagging embedding in a MAGIC-like fashion; we leave the
study of such integration to future work.

ARCC [37] additively increases strength of ECC only
for memory regions that show more errors during memory
scrubbing. While ARCC uses standard ChipKill, Polymorphic
ECC can make the idea even more advantageous, as one can
use single ECC schemes for all the memory, while choosing a
better fault model when error rates rise. Similarly, ArchShield
[54] can assign stronger fault model for vulnerable words
instead of storing them in separate storage.

The ECC schemes for emerging technologies, like nvm-
based persistent main memory, must provide higher reliabil-
ity guarantees than DRAM-specific ECC because nvm-based
main memory allows data persistence during system reboot.
The power-off phase preserves the data and accumulates
errors, necessitating ECCs more errors than just ChipKill, e.g.,
[78] with multiple tiers of codes. Polymorphic ECC’s support
of multiple fault models may further improve those systems’
reliability. Moreover, Soteria [80], a reliability-security co-
design of nvm-based main memory, may benefit from Poly-
morphic ECC’s integrated MACs, to simplify its design.

Perhaps the closest in spirit scheme to Polymorphic ECC

is Unity ECC [41], which uses unused syndromes in the code
for double errors. However, Unity ECC’s error coverage is
limited by the number of unused syndromes and leaves no
space for MACs, resulting in a less secure system than one
with Polymorphic ECC.

X. CONCLUSION

This paper showed how Out-of-Model Faults affect systems’
availability and reliability with encrypted data. To mitigate
the effects of those faults, we presented Polymorphic ECC –
a novel ECC scheme with redundancy polymorphism, which
allows the same redundancy value to be used for multiple
fault models, resulting in more efficient storage utilization. We
showed that with Polymorphic ECC’s novel construction, the
search space for errors is much smaller than when parity-based
schemes are used due to fine-grained control of the redundancy
size while preserving symbol alignment to DRAMs. As a
result, traditional fault models, e.g., ChipKill, are corrected
in one iteration, compared to the parity-guided search that
needs orders of magnitude more trials. This feature is the core
strength of residue codes that differentiates it from schemes
based on Galois Fields. As a result, Polymorphic ECC corrects
more errors faster, making it highly practical.

In addition, we showed that Polymorphic ECC is highly
flexible, allowing embedding any MAC, which can be at least
40-bit long, thus providing better security and data integrity
than commercial systems while detecting almost any error.
To showcase its utility, we showed how Polymorphic ECC
corrects a series of a real-world rowhammer-induced errors,
which was possible due to its extended fault model coverage.

Looking forward, the expansive error coverage with Poly-
morphic ECC can enable precise studies of DRAM failures in
the field, such as recent efforts proposed for standardization
by the Open Compute Project (OCP) for Memory Fault Man-
agement Infrastructure (FMI) [60] across the vendors. With
Polymorphic ECC and OCP’s FMI, detected errors could be
classified with more precision than with the traditional codes,
which convert Out-Of-Model Faults into SDCs or DUEs,
hiding their true nature and scope. Overall, Polymorphic ECC
represents an exciting and novel advance for co-designing
secure and reliable systems with low overhead.

ACKNOWLEDGMENT

We thank Hari Venugopalan, Kaustav Goswami, and Pro-
fessor Jason Lowe-Power for providing us with rowhammer
error patterns for the experiments. We also thank Google for
the unrestricted gift to support this research. Generative AI
tools were utilized to generate figures and parts of the source
code in the artifact. Simha Sethumadhavan has a significant
financial interest in Chip Scan Inc.

APPENDIX

A. Abstract

This artifact contains the following three components
A) ECC Miscorrection Profiler: code to reproduce Table II.

B) SDC Profiler: code to reproduce the results in Table IV,
Table V, and Figure 7.

C) VLSI implementation: Verilog implementation of Poly-
morphic ECC to reproduce Table VI.

Artifacts are packaged with Docker, so they are easy to set up
and run.

B. Artifact check-list (meta-information)
• Algorithm: Source code implementing Algorithm 1 and 2
• Compilation: performed automatically within the docker con-

tainer.
• Run-time environment: Docker container.
• Hardware: x86 64-based system.
• Execution: No requirements.
• Metrics: printed out tables, figures as pdf files.
• Output: A text file per experiment with search configuration

supplied via command line, i.e., codeword and symbol lengths
in bits, redundancy budget in bits, etc., and a table with data.
Figures as pdf files.

• How much disk space is required (approximately)?: about
30-40 GB.

• How much time is needed to prepare workflow (approxi-
mately)?: few minutes for all artifacts.

• How much time is needed to complete experiments (approx-
imately)?: Few hours for artifact 1, 5-7 days for Artifact 2, and
about 20 minutes for Artifact 3. One specific configuration of
Artifact 2 is the bottleneck, others can be done in about a day
(depending on the CPU count).

• Publicly available?: Yes, archived via Zenodo.
• Code licenses (if publicly available)?: APACHE 2.0
• Workflow automation framework used?: Docker containers.
• Archived (provide DOI)?: https://doi.org/10.5281/zenodo.

13786095

C. Description

1) How to access: The artifact is licensed with Apache
2.0 license and can be downloaded from https://doi.org/10.
5281/zenodo.13786095. The artifact contains the source code,
installation instructions, and steps to run the experiments.

2) Hardware dependencies: The artifact was developed and
tested on x86 64-based system with Intel Core i7-8700 CPU.

3) Software dependencies: The artifact requires Docker
runtime.

D. Installation

Download and install docker daemon via https://docs.
docker.com/get-docker/. Each directory of the artifact has
Makefile that builds the container and produces the results,
i.e., tables and figures.

E. Experiment workflow

ECC Miscorrection Profiling In profiling directory,
reproduce Table II by running make missdata. The results
are saved to a file named Table-2.txt.
SDC Profiling In profiling directory, reproduce Table IV
and Table V by running make sdcdata. The results are
saved to files named Table-4.txt, Table-6.txt.
Aliasing Degree Trade-off In directory tradeoff-fig
ure, reproduce Figure 7 by running make figure. When

profiling is done, the figure will be in file Figure.pdf.
VLSI implementation The experiments are performed with
make hw. After all place-and-route runs are finished, a table
with the results will be printed to the console and saved to a
file named Table-5.txt.

F. Evaluation and expected results

At the end of the simulations, the content of all the files
should be close to those in the paper. A small variance is
expected as all the profilers rely on random number generators.

G. Notes

SDC Profiling. The SDC profiler is moderately fast except
for the ChipKill+1 and DEC models. Those take about a
week on a 96-core CPU for one million test cases, and can run
significantly faster while providing similar results with fewer
test cases.

H. Methodology

Submission, reviewing and badging methodology:
• https://www.acm.org/publications/policies/artifact-

review-and-badging-current
• https://cTuning.org/ae

REFERENCES

[1] BIOS and Kernel developer’s guide (BKDG) for AMD family 15h models
00h–0Fh processors, Advanced Micro Devices, Inc., January 2013.

[2] T. Ajayi, D. Blaauw, T.-B. Chan, C.-K. Cheng, V. Chhabria, D. K.
Choo, M. Coltella, R. G. Dreslinski, M. Fogaça, S. M. Hashemi,
A. A. Ibrahim, A. B. Kahng, M. Kim, J. Li, Z. Liang, U. Mallappa,
P. I. Pénzes, G. Pradipta, S. Reda, A. Rovinski, K. Samadi, S. S.
Sapatnekar, L. K. Saul, C. Sechen, V. Srinivas, W. Swartz, D. Sylvester,
D. Urquhart, L. Wang, M. Woo, and B. Xu, “OpenROAD: Toward a
Self-Driving, Open-Source Digital Layout Implementation Tool Chain,”
in Proceedings of Government Microcircuit Applications and Critical
Technology Conference, 2019, pp. 1105–1110.

[3] T. Ajayi, V. A. Chhabria, M. Fogaça, S. Hashemi, A. Hosny, A. B.
Kahng, M. Kim, J. Lee, U. Mallappa, M. Neseem et al., “Toward an
open-source digital flow: First learnings from the OpenROAD project,”
in Proceedings of the 56th Annual Design Automation Conference 2019,
2019, pp. 1–4.

[4] ARM Architecture Reference Manual Supplement for ARMv9-A archi-
tecture profile., ARM Limited, 2021, Rev. A.d.

[5] R. Avanzi, “The QARMA Block Cipher Family. Almost MDS Matrices
Over Rings With Zero Divisors, Nearly Symmetric Even-Mansour Con-
structions With Non-Involutory Central Rounds, and Search Heuristics
for Low-Latency S-Boxes,” IACR Transactions on Symmetric Cryptol-
ogy, vol. 2017, pp. 4–44, 2017.

[6] D. F. Bacon, “Detection and prevention of silent data corruption in an
exabyte-scale database system,” in The 18th IEEE Workshop on Silicon
Errors in Logic-System Effects (SELSE), 2022.

[7] L. Bautista-Gomez, F. Zyulkyarov, O. Unsal, and S. McIntosh-Smith,
“Unprotected computing: A large-scale study of dram raw error rate on a
supercomputer,” in SC ’16: Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis,
2016, pp. 645–655.

[8] M. V. Beigi, Y. Cao, S. Gurumurthi, C. Recchia, A. Walton, and
V. Sridharan, “A Systematic Study of DDR4 DRAM Faults in the Field,”
in 2023 IEEE International Symposium on High-Performance Computer
Architecture (HPCA), 2023, pp. 991–1002.

[9] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti et al., “The gem5
simulator,” ACM SIGARCH Computer Architecture News, vol. 39, no. 2,
pp. 1–7, 2011.

https://doi.org/10.5281/zenodo.13786095
https://doi.org/10.5281/zenodo.13786095
https://doi.org/10.5281/zenodo.13786095
https://doi.org/10.5281/zenodo.13786095
https://docs.docker.com/get-docker/
https://docs.docker.com/get-docker/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://cTuning.org/ae

[10] J. Bucek, K.-D. Lange, and J. v. Kistowski, “SPEC CPU2017: Next-
generation compute benchmark,” in Companion of the 2018 ACM/SPEC
International Conference on Performance Engineering, Berlin, Germany,
2018, pp. 41–42.

[11] P.-C. Cheng, W. Ozga, E. Valdez, S. Ahmed, Z. Gu, H. Jamjoom,
H. Franke, and J. Bottomley, “Intel TDX Demystified: A Top-Down
Approach,” ACM Computing Surveys, vol. 56, no. 9, apr 2024.

[12] Z. Cheng, S. Han, P. P. C. Lee, X. Li, J. Liu, and Z. Li, “An In-
Depth Correlative Study Between DRAM Errors and Server Failures
in Production Data Centers,” in 2022 41st International Symposium on
Reliable Distributed Systems (SRDS), 2022, pp. 262–272.

[13] A. Cho, A. Saxena, M. Qureshi, and A. Daglis, “A Case for CXL-Centric
Server Processors,” 2023.

[14] L. Cojocar, K. Razavi, C. Giuffrida, and H. Bos, “Exploiting Correcting
Codes: On the Effectiveness of ECC Memory Against Rowhammer
Attacks,” in 2019 IEEE Symposium on Security and Privacy (SP), San
Francisco, California, USA, 2019, pp. 55–71.

[15] T. J. Dell, “A white paper on the benefits of ChipKill-correct ECC for
PC server main memory,” IBM Microelectronics division, Tech. Rep.,
11 1997.

[16] G. Dhanuskodi, S. Guha, V. Krishnan, A. Manjunatha, M. O’Connor,
R. Nertney, and P. Rogers, “Creating the First Confidential GPUs: The
team at NVIDIA brings confidentiality and integrity to user code and
data for accelerated computing.” Queue, vol. 21, no. 4, pp. 68–93, sep
2023.

[17] H. D. Dixit, L. Boyle, G. Vunnam, S. Pendharkar, M. Beadon, and
S. Sankar, “Detecting silent data corruptions in the wild,” 2022.

[18] X. Du, C. Li, S. Zhou, M. Ye, and J. Li, “Predicting Uncorrectable
Memory Errors for Proactive Replacement: An Empirical Study on
Large-Scale Field Data,” in 2020 16th European Dependable Computing
Conference (EDCC), 2020, pp. 41–46.

[19] M. Dworkin, E. Barker, J. Nechvatal, J. Foti, L. Bassham, E. Roback,
and J. Dray, “Advanced Encryption Standard (AES),” 2001.

[20] A. Fakhrzadehgan, Y. N. Patt, P. J. Nair, and M. K. Qureshi, “Safe-
Guard: Reducing the Security Risk from Row-Hammer via Low-Cost
Integrity Protection,” in 2022 IEEE International Symposium on High-
Performance Computer Architecture (HPCA), 2022, pp. 373–386.

[21] J. Fruehe, “AMD EPYC brings new RAS capability,” Moor Insights and
Strategy, Tech. Rep., June 2017, white paper.

[22] R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter, M. Naehrig, and
J. Wernsing, “CryptoNets: Applying Neural Networks to Encrypted
Data with High Throughput and Accuracy,” in Proceedings of The
33rd International Conference on Machine Learning, ser. Proceedings
of Machine Learning Research, M. F. Balcan and K. Q. Weinberger,
Eds., vol. 48. New York, New York, USA: PMLR, 20–22 Jun 2016,
pp. 201–210.

[23] S. Gong, J. Kim, S. Lym, M. Sullivan, H. David, and M. Erez, “DUO:
Exposing On-Chip Redundancy to Rank-Level ECC for High Relia-
bility,” in 2018 IEEE International Symposium on High Performance
Computer Architecture (HPCA), Vienna, Austria, 2018, pp. 683–695.

[24] D. Gruss, M. Lipp, M. Schwarz, D. Genkin, J. Juffinger, S. O’Connell,
W. Schoechl, and Y. Yarom, “Another Flip in the Wall of Rowhammer
Defenses,” in 2018 IEEE Symposium on Security and Privacy (SP),
2018, pp. 245–261.

[25] M. Guevara, “Expanding our Fully Homomorphic Encryption
Offering,” https://developers.googleblog.com/2023/08/expanding-our-
fully-homomorphic-encryption-offering.html, August 2023, accessed:
2023-11-28.

[26] D. S. Henderson, “Residue class error checking codes,” in Proceedings
of the 1961 16th ACM national meeting, 1961, pp. 132.101–132.104.

[27] D. Henderson, “POWER Processor-Based Systems RAS,” IBM, Septem-
ber 2020.

[28] P. H. Hochschild, P. Turner, J. C. Mogul, R. Govindaraju, P. Ran-
ganathan, D. E. Culler, and A. Vahdat, “Cores that don’t count,” in
Proceedings of the Workshop on Hot Topics in Operating Systems,
ser. HotOS ’21. New York, NY, USA: Association for Computing
Machinery, 2021, pp. 9–16.

[29] M.-Y. Hsiao, “A Class of Optimal Minimum Odd-weight-column SEC-
DED Codes,” IBM Journal of Research and Development, vol. 14, no. 4,
pp. 395–401, 1970.

[30] M.-Y. Hsiao and J. T. Tou, “Application of Error-Correcting Codes in
Computer Reliability Studies,” IEEE Transactions on Reliability, vol.
R-18, no. 3, pp. 108–118, 1969.

[31] R. Huang and G. E. Suh, “IVEC: off-chip memory integrity protection
for both security and reliability,” in Proceedings of the 37th Annual
International Symposium on Computer Architecture, ser. ISCA ’10.
New York, NY, USA: Association for Computing Machinery, 2010, pp.
395–406.

[32] Y. Jang, J. Lee, S. Lee, and T. Kim, “SGX-Bomb: Locking Down the
Processor via Rowhammer Attack,” in Proceedings of the 2nd Workshop
on System Software for Trusted Execution, ser. SysTEX’17. New York,
NY, USA: Association for Computing Machinery, 2017.

[33] JEDEC, JESD79-4, DDR4 SDRAM, JEDEC Solid State Technology
Association, July 2014.

[34] ——, JESD79-5, DDR5 SDRAM, JEDEC Solid State Technology As-
sociation, July 2020.

[35] ——, JESD238 HBM3 Standard, JEDEC Solid State Technology Asso-
ciation, January 2023.

[36] X. Jian, H. Duwe, J. Sartori, V. Sridharan, and R. Kumar, “Low-
Power, Low-Storage-Overhead Chipkill Correct via Multi-Line Error
Correction,” in Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis, ser. SC ’13,
Denver, Colorado, 2013.

[37] X. Jian and R. Kumar, “Adaptive Reliability Chipkill Correct (ARCC),”
in 2013 IEEE 19th International Symposium on High Performance
Computer Architecture (HPCA), 2013, pp. 270–281.

[38] J. Juffinger, L. Lamster, A. Kogler, M. Eichlseder, M. Lipp, and
D. Gruss, “CSI:Rowhammer – Cryptographic Security and Integrity
against Rowhammer,” in 2023 IEEE Symposium on Security and Privacy
(SP), 2023, pp. 1702–1718.

[39] M. Kaliorakis, D. Gizopoulos, R. Canal, and A. Gonzalez, “MeRLiN:
Exploiting dynamic instruction behavior for fast and accurate microar-
chitecture level reliability assessment,” in 44th Annual International
Symposium on Computer Architecture (ISCA), 2017, pp. 241–254.

[40] D. Kaplan, J. Powell, and T. Woller, “AMD Memory Encryption,”
Advanced Micro Devices, Inc., Tech. Rep., 2021.

[41] D. Kim, J. Lee, W. Jung, M. Sullivan, and J. Kim, “Unity ECC: Unified
Memory Protection Against Bit and Chip Errors,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, ser. SC ’23. New York, NY, USA: Association
for Computing Machinery, 2023.

[42] J. Kim, M. Sullivan, and M. Erez, “Bamboo ECC: Strong, safe, and
flexible codes for reliable computer memory,” in 2015 IEEE 21st
International Symposium on High Performance Computer Architecture
(HPCA), Burlingame, California, USA, Feb. 2015, pp. 101–112.

[43] M. Kounavis, D. Durham, S. Deutsch, K. Matusiewicz, and D. Wheeler,
“The MAGIC Mode for Simultaneously Supporting Encryption, Mes-
sage Authentication and Error Correction,” Cryptology ePrint Archive,
Paper 2020/1460, 2020.

[44] L. Lamster, M. Unterguggenberger, D. Schrammel, and S. Mangard,
“HashTag: Hash-based integrity protection for tagged architectures,” in
32nd USENIX Security Symposium (USENIX Security 23). Anaheim,
CA: USENIX Association, Aug. 2023, pp. 2797–2814.

[45] ——, “Voodoo: Memory Tagging, Authenticated Encryption, and Error
Correction through MAGIC,” in 33rd USENIX Security Symposium
(USENIX Security 24). Philadelphia, PA: USENIX Association, Aug.
2024, pp. 7159–7176.

[46] L. A. Lastras-Montaño, P. J. Meaney, E. Stephens, B. M. Trager,
J. O’Connor, and L. C. Alves, “A new class of array codes for memory
storage,” in 2011 Information Theory and Applications Workshop, 2011,
pp. 1–10.

[47] R. Leveugle, A. Calvez, P. Maistri, and P. Vanhauwaert, “Statistical fault
injection: Quantified error and confidence,” in 2009 Design, Automation
& Test in Europe Conference & Exhibition, 2009, pp. 502–506.

[48] S. Levy, K. B. Ferreira, N. DeBardeleben, T. Siddiqua, V. Sridharan, and
E. Baseman, “Lessons Learned from Memory Errors Observed Over
the Lifetime of Cielo,” in SC18: International Conference for High
Performance Computing, Networking, Storage and Analysis, 2018, pp.
554–565.

[49] Y.-C. Liu, “Byte Error Correction in Memory and Arithmetic Units,”
Ph.D. dissertation, Northwestern University, 1970.

[50] Y. Luo, S. Govindan, B. Sharma, M. Santaniello, J. Meza, A. Kansal,
J. Liu, B. Khessib, K. Vaid, and O. Mutlu, “Characterizing Appli-
cation Memory Error Vulnerability to Optimize Datacenter Cost via
Heterogeneous-Reliability Memory,” in 2014 44th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, 2014,
pp. 467–478.

https://developers.googleblog.com/2023/08/expanding-our-fully-homomorphic-encryption-offering.html
https://developers.googleblog.com/2023/08/expanding-our-fully-homomorphic-encryption-offering.html

[51] E. Manzhosov, A. Hastings, M. Pancholi, R. Piersma, M. T. I. Ziad, and
S. Sethumadhavan, “Revisiting Residue Codes for Modern Memories,”
in 2022 55th IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2022, pp. 73–90.

[52] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi,
V. Shanbhogue, and U. R. Savagaonkar, “Innovative Instructions and
Software Model for Isolated Execution,” in Proceedings of the 2nd
International Workshop on Hardware and Architectural Support for
Security and Privacy, ser. HASP ’13. New York, NY, USA: Association
for Computing Machinery, 2013.

[53] J. Meza, Q. Wu, S. Kumar, and O. Mutlu, “Revisiting Memory Errors in
Large-Scale Production Data Centers: Analysis and Modeling of New
Trends from the Field,” in 2015 45th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, 2015, pp. 415–426.

[54] P. J. Nair, D.-H. Kim, and M. K. Qureshi, “ArchShield: Architectural
Framework for Assisting DRAM Scaling by Tolerating High Error
Rates,” in Proceedings of the 40th Annual International Symposium
on Computer Architecture, ser. ISCA ’13. New York, NY, USA:
Association for Computing Machinery, 2013, pp. 72–83.

[55] P. J. Nair, V. Sridharan, and M. K. Qureshi, “XED: Exposing On-
Die Error Detection Information for Strong Memory Reliability,” in
2016 ACM/IEEE 43rd Annual International Symposium on Computer
Architecture (ISCA), 2016, pp. 341–353.

[56] D.-T. Nguyen, N.-M. Ho, W.-F. Wong, and I.-J. Chang, “OBET: On-
the-Fly Byte-Level Error Tracking for Correcting and Detecting Faults
in Unreliable DRAM Systems,” Sensors, vol. 21, no. 24, 2021.

[57] M. Nocker, D. Drexel, M. Rader, A. Montuoro, and P. Schöttle, “HE-
MAN - Homomorphically Encrypted MAchine Learning with ONnx
Models,” in Proceedings of the 2023 8th International Conference on
Machine Learning Technologies, ser. ICMLT ’23. New York, NY, USA:
Association for Computing Machinery, 2023, pp. 35–45.

[58] Oracle, “Hardware-assisted checking using Silicon Secured Mem-
ory (SSM),” https://docs.oracle.com/cd/E37069 01/html/E37085/gphwb.
html, 2015.

[59] A. Patil, V. Nagarajan, R. Balasubramonian, and N. Oswald, “Dvé: Im-
proving DRAM Reliability and Performance On-Demand via Coherent
Replication,” in 2021 ACM/IEEE 48th Annual International Symposium
on Computer Architecture (ISCA), 2021, pp. 526–539.

[60] O. C. Project, OCP Fault Management Infrastructure Requirements,
Open Compute Project, 2023.

[61] I. S. Reed and G. Solomon, “Polynomial codes over certain finite fields,”
Journal of the society for industrial and applied mathematics, vol. 8,
no. 2, pp. 300–304, 1960.

[62] G. Saileshwar, P. J. Nair, P. Ramrakhyani, W. Elsasser, and M. K.
Qureshi, “Synergy: Rethinking secure-memory design for error-
correcting memories,” in 2018 IEEE International Symposium on High
Performance Computer Architecture (HPCA), Vienna, Austria, 2018, pp.
454–465.

[63] C. Schoeny, F. Sala, M. Gottscho, I. Alam, P. Gupta, and L. Dolecek,
“Context-Aware Resiliency: Unequal Message Protection for Random-
Access Memories,” IEEE Transactions on Information Theory, vol. 65,
no. 10, pp. 6146–6159, 2019.

[64] M. Seaborn and T. Dullien, “Exploiting the DRAM rowhammer bug to
gain kernel privileges,” Black Hat, vol. 15, p. 71, 2015.

[65] C. E. Shannon, “Communication theory of secrecy systems,” The Bell
system technical journal, vol. 28, no. 4, pp. 656–715, 1949.

[66] I. Silicon Integration Initiative, “The Nangate Open Cell Library 45nm
FreePDK.” [Online]. Available: https://si2.org/open-cell-library

[67] V. Sridharan, N. DeBardeleben, S. Blanchard, K. B. Ferreira, J. Stearley,
J. Shalf, and S. Gurumurthi, “Memory Errors in Modern Systems:
The Good, The Bad, and The Ugly,” in Proceedings of the Twentieth
International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS ’15. New York, NY,
USA: Association for Computing Machinery, 2015, pp. 297–310.

[68] M. B. Sullivan, M. T. I. Ziad, A. Jaleel, and S. W. Keckler, “Im-
plicit Memory Tagging: No-Overhead Memory Safety Using Alias-
Free Tagged ECC,” in Proceedings of the 50th Annual International
Symposium on Computer Architecture, ser. ISCA ’23. New York, NY,
USA: Association for Computing Machinery, 2023.

[69] Memory RAS Configuration, Rev 1.0, Supermicro Inc., 2017.
[70] M. Taassori, R. Balasubramonian, S. Chhabra, A. R. Alameldeen,

M. Peddireddy, R. Agarwal, and R. Stutsman, “Compact Leakage-Free
Support for Integrity and Reliability,” in Proceedings of the ACM/IEEE

47th Annual International Symposium on Computer Architecture (ISCA),
ser. ISCA ’20, Virtual Event, 2020, pp. 735–748.

[71] A. Tatar, R. K. Konoth, E. Athanasopoulos, C. Giuffrida, H. Bos, and
K. Razavi, “Throwhammer: Rowhammer Attacks over the Network and
Defenses,” in 2018 USENIX Annual Technical Conference (USENIX
ATC 18). Boston, MA: USENIX Association, Jul. 2018, pp. 213–226.

[72] A. N. Udipi, N. Muralimanohar, R. Balsubramonian, A. Davis, and
N. P. Jouppi, “LOT-ECC: Localized and tiered reliability mechanisms
for commodity memory systems,” in 2012 39th Annual International
Symposium on Computer Architecture (ISCA), Portland, Oregon, USA,
2012, pp. 285–296.

[73] H. Venugopalan, K. Goswami, Z. A. Din, J. Lowe-Power, S. T. King,
and Z. Shafiq, “Centauri: Practical Rowhammer Fingerprinting,” 2023.

[74] “Armv8.5-A: Memory Tagging Extension,” ARM Limited, Tech. Rep.,
2018.

[75] “H3C G5 Servers RAS. Technology White Paper,” New H3C Technolo-
gies Co., Tech. Rep., 2023.

[76] “Intel Trust Domain Extensions,” Intel Corporation, Tech. Rep., Febru-
ary 2023, White Paper.

[77] Zama, “Concrete: TFHE Compiler that converts python programs into
FHE equivalent,” 2022, https://github.com/zama-ai/concrete.

[78] D. Zhang, V. Sridharan, and X. Jian, “Exploring and Optimiz-
ing Chipkill-Correct for Persistent Memory Based on High-Density
NVRAMs,” in 2018 51st Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), 2018, pp. 710–723.

[79] D. Zivanovic, P. E. Dokht, S. Moré, J. Bartolome, P. M. Carpenter,
P. Radojković, and E. Ayguadé, “DRAM Errors in the Field: A Statistical
Approach,” in Proceedings of the International Symposium on Memory
Systems, ser. MEMSYS ’19. New York, NY, USA: Association for
Computing Machinery, 2019, pp. 69–84.

[80] K. A. Zubair, S. Gurumurthi, V. Sridharan, and A. Awad, “Soteria:
Towards Resilient Integrity-Protected and Encrypted Non-Volatile Mem-
ories,” in MICRO-54: 54th Annual IEEE/ACM International Symposium
on Microarchitecture, ser. MICRO ’21. New York, NY, USA: Associ-
ation for Computing Machinery, 2021, pp. 1214–1226.

https://docs.oracle.com/cd/E37069_01/html/E37085/gphwb.html
https://docs.oracle.com/cd/E37069_01/html/E37085/gphwb.html
https://si2.org/open-cell-library
https://github.com/zama-ai/concrete

	Introduction
	Background
	Modern Main Memory Organization
	Fault Models and Error Correction
	Memory Encryption

	Motivation
	Out-of-Model Faults
	Reliability Impact of Out-of-Model Faults

	Our Solution for Multi-Fault-Model Support
	Design of Polymorphic ECC
	Polymorphic ECC overview
	Code Construction and Remainder Aliasing
	Multi-Fault Model Error Correction
	Remainder-Error Mapping

	Microarchitecture
	System Integration
	Error-Candidates Generation
	Encoding and Decoding
	Iterative Error Correction

	Experimental Methodology
	Estimation of the Out-of-Model Fault Rate
	Fault Injection Methodology
	Experimental Setup

	Evaluation
	Polymorphic ECC Configurations for DDR5
	Fault Coverage with Polymorphic ECC
	Analysis of Iterative Error Correction
	Hardware and Performance Overheads
	Rowhammer Case Study

	Related Work
	Conclusion
	Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies

	Installation
	Experiment workflow
	Evaluation and expected results
	Notes
	Methodology

	References

